
Windows PowerShell

PROGRAMMING PARADIGMS
(2 N D S E M E S T E R , 2 0 1 4 / 2 0 1 5)

João Pedro Dias (ei11137@fe.up.pt)

Hugo Freixo (ei11086@fe.up.pt)

WINDOWS POWERSHELL

•Developed by Microsoft for Windows
Operative System’s.

• Is a task-based command-line shell and
scripting language.
• Appeared as an update for the pre-existent command-line

interface tool cmd.exe

• It is designed especially for system
administration that is used by information
technology professionals on a regular basis.

WINDOWS POWERSHELL

• Built in C++ language.

• Is built on the top of .NET framework.

• Can execute:

• cmdlets – “command let” (.NET programs that
interact with PowerShell)

• PowerShell scripts (.ps1 files)

• PowerShell functions

• Standalone executable programs

Examples of cmdlet:

• Get-Location

• Set-Location

• Copy-Item

• Remove-Item

• Move-Item

• Rename-Item

• New-Item

WINDOWS POWERSHELL
ISE

• Windows PowerShell Integrated

Scripting Environment (ISE) is a tool for

development and run PowerShell

scripts (.ps1).

HISTORY

Initial release:
2006 (9 years
ago)

• Released for Windows
XP SP2, Windows
Server 2003 and
Windows Vista.

PowerShell 1.0

Released in
2009

• PowerShell Remoting

• Background Jobs

• Modules

• Script Debugging

• Windows PowerShell
ISE

• Network File Transfer

PowerShell 2.0

Released in 2012

• Schedule jobs

• Session connectivity

• Task delegation
support

PowerShell 3.0

Released in 2013

• Where and ForEach

• Network diagnostics

• Desired State
Configuration

PowerShell 4.0

Released in 2014

• Develop using classes
(Class, Enum)

• PowerShellGet
(PowerShell Resource
Gallery)

PowerShell 5.0

POWERSHELL VS. WINDOWS BATCH SCRIPTING

• Cmdlets
• Managing the registry or WMI (Windows

Management Instrumentation).

• Use of pipes.

• Powerful scripting environment.

• Almost full access to .NET framework
functionalities.

• Legacy environment carried forward in
Windows
• An environment that copies all of the various DOS

commands you would find on a DOS system.

• Limited scripting functions
• May contain any command the interpreter accepts

interactively at the command prompt plus Goto,
For and If.

POWERSHELL VS. LINUX SHELL SCRIPTING

• PowerShell command window has
support for a ton of the *nix shell
commands.

• ls, pwd, etc.

• Everything is an object. You can pass the
result of a command to another as an
object.

• Everything is a file.

• The input and output of a Unix command can
be accessed like a file. This makes chaining
command really simple and reusing the output
of one command by another is the power of the
Unix shell.

POWERSHELL ANATOMY OBJECT-BASED

• One of the potential (dis)advantages of using
Windows PowerShell is that it is object-based.

• With most shells, you rely on text-based
commands to get the job done when writing scripts.
If you switch to Windows PowerShell from some
other type of shell, you'll have to get used to a
different way of thinking about things.

• This can be a problem that takes some time to get
past for some users.

POWERSHELL ANATOMY SECURITY RISKS

• Many IT professionals use it as a way to connect
remotely to other computers and servers.

• When engaging in this process, PowerShell can
leave some holes open for security breaches.

• This creates a potential for viruses, malware or
other harmful programs to be installed in the server.

POWERSHELL ANATOMY WEB SERVER

• Another issue with Windows
PowerShell is that it requires you to
run a Web server on your server
when utilizing remote functionality.

• This takes up additional space on a
server. In many cases, companies will
not want to take up more room and
designate more resources to this on
their own servers.

POWERSHELL ANATOMY ADVANTAGES

• Since it is developed by Microsoft, it is being
integrated more and more into Microsoft products
and services.

• Windows PowerShell is also versatile and easy to
administrate once you learn the basics of the
scripting language.

• It also gives you the ability to run specific
commands that are designed to run only on local
networks if you are using the remote connection
function.

POWERSHELL SYNTAX

Variables

$var = 'hello‘

$number = 1

$numbers = 1,2,3,4,5,6,7,8,9

$name = 'Don'

$prompt = "My name is $name”

PS C:\WINDOWS\System32> $prompt
My name is Don

Object Members and Variables

$var = 'Hello'

$var | Get-Member

$svc = Get-Service

$svc[0].name

$name = $svc[1].name

$name.length

$name.ToUpper()

POWERSHELL SYNTAX

If Construct

If ($this -eq $that) {

commands

} elseif ($those -ne $them) {

commands

} elseif ($we -gt $they) {

commands

} else {

commands

}

Do While Construct

Do {

commands

} While ($this -eq $that)

While (Test-Path $path) {

commands

}

POWERSHELL SYNTAX

ForEach Construct

$services = Get-Service

ForEach ($service in $services)
{

$service.Stop()

}

Functions

function func {

Get-Service

Get-Process

}

func

PROGRAMMING PARADIGMS

Imperative

Pipeline

Object-
Oriented

Functional

Reflective

Scripting

SCRIPTING PARADIGM

$t = Get-WmiObject MSAcpi_ThermalZoneTemperature -
Namespace "root/wmi“

$result = @()

foreach ($temp in $t.CurrentTemperature)

{

$TempK = $temp / 10

$TempC = $TempK - 273.15

$TempF = (9/5) * $TempC + 32

$result += $TempC.ToString() + “C`n" +

$TempF.ToString() + “F`n" + $TempK + "K"

}

Write-Host $result

 “Scripting Language: (skript´ing
lang´gwij) (n.) A high-level
programming language that is
interpreted by another program
at runtime rather than compiled
by the computer's processor as
other programming languages
(such as C and C++) are.”

in Webopedia

IMPERATIVE PARADIGM

Import-Module ServerManager

#Check and install ASP.NET 4.5 feature

If (-not(Get-WindowsFeature "Web-Asp-Net45").Installed)
{
try {

Add-WindowsFeature Web-Asp-Net45
}
catch {

Write-Error $_
}

}

 "Computer, add x and y“

 "Computer, open a dialog
box onto the screen."

 “Computer, check if the
ASP.NET is installed, if not,
install it."

OBJECT-ORIENTED PARADIGM

$DogClass = new-object psobject -Property @{
color = $null
name = $null
_size = $null

}

$dogclass |Add-Member -PassThru -MemberType ScriptMethod -Name
Size -Value {
param(

[Parameter(Mandatory=$false, Position=0)]
$Size

)
if ($size) {

$this._size = $size
} else {

$this._size
}

}

 Class

 Constructors

 Methods

 Inheritance

 Overriding

REFLECTIVE PARADIGM

$text = "Some random text"

$varinfo = $text.GetType();

$varinfo.GetProperties();

Output:

MemberType : Property
Name : Length
DeclaringType : System.String
ReflectedType : System.String
MetadataToken : 385875995
Module : CommonLanguageRuntimeLibrary
PropertyType : System.Int32
Attributes : None
CanRead : True
CanWrite : False
IsSpecialName : False

 “(…)ability to observe or
change its own code as well
as all aspects of its
programming language
(syntax, semantics, or
implementation) at runtime.”

in RosettaCode

PIPELINE PARADIGM

Simple PowerShell Pipeline Example

Get-Process | Where-Object {$_.handlecount -gt 100 }

#The problem: We need to control the properties

#The solution: A second pipe, then control the display
with Format-Table

Get-Process `

| Where-Object {$_.company -Notlike '*Microsoft*'}`

| Format-Table ProcessName, Company -auto

 Origins remote to the Unix based
Operative Systems.

 “The pipe character is used
between commands to create the
pipeline. We work from left to right
down the pipeline. The output of
one command effectively becomes
the input of the next command.”

in http://blogs.technet.com

FUNCTIONAL PARADIGM

Immutable
function New-ImmutableObject($object) {
$immutable = New-Object PSObject

$object.Keys | % {
$value = $object[$_]
$closure = { $value }.GetNewClosure()
$immutable | Add-Member -name $_ -memberType

ScriptProperty -value $closure
}

return $immutable
}

#Higher Order Functions
function Convert-ByFilter($values, $predicate) {
return $values | where { & $predicate $_ }

}

 Immutable Object

 Higher Order Functions

 Currying

 Lazy Evaluation (System.Lazy)

 Pattern Matching

 Closures (GetNewClosure)

REFERENCES

• Windows PowerShell 3.0 Step by Step (Step by Step Developer) by Ed Wilson

• Windows PowerShell Cookbook: The Complete Guide to Scripting Microsoft's Command Shell by Lee Holmes

• Windows PowerShell in Action, Second Edition by Bruce Payette

• Pro Windows PowerShell by Hristo Deshev

ONLINE RESOURCES

• IRC - #powershell on freenode

• Reddit - /r/powershell

• News
• http://www.powershellmagazine.com/

• Blogs & Websites
• http://blogs.msdn.com/b/powershell/

• http://powershell.com/

• Scripts Repositories
• http://gallery.technet.microsoft.com/ScriptCenter/

• http://technet.microsoft.com/en-us/scriptcenter/default.aspx

• http://poshcode.org/

http://www.powershellmagazine.com/
http://blogs.msdn.com/b/powershell/
http://powershell.com/
http://gallery.technet.microsoft.com/ScriptCenter/
http://technet.microsoft.com/en-us/scriptcenter/default.aspx
http://poshcode.org/

Windows PowerShell

THANK YOU! Questions?

